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The problem of a bounded planar crack in a homogeneous, is©tropic, linearly elastic space is considered. It is assumed that uniform 
normal loads, which are equal in magnitude and opposite in direction, are applied to the crack surfaces. It is shown that a circle 
is the only form of crack for which the stress intensity factor is constant along its contour. © 2005 Elsevier Ltd. All rights reserved. 

1. F O R M U L A T I O N  O F  T H E  P R O B L E M  

Suppose a crack occupies a bounded domain G in the plane x 3 ----- 0 of an unbounded, homogeneous 
and is©tropic elastic space. Normal loads, which are equal in magnitude and opposite in direction, are 
applied to the crack surfaces and the displacements tend to zero at infinity. We will denote the load 
applied to the upper surface of the crack by t(Xl, x2). It is well known that the problem reduces to a 
pseudodifferential equation in the crack domain [1] 

pcAU(Xl, X2) = 1 - V t ( x l ,  x2), (xl, x2) 6 G; tl(Xl, X2) = O, (Xl, X2)~ G (1.1) 
g 

Here, U(Xl, x2) is the displacement of the upper surface of the crack, g is the shear modulus, v is Poisson's 
ratio and A is a pseudodifferential operator with a symbol = + = (~1, ~2) 

Au = F-l(l~lfi (~)), fi (~) = ~ u (x 1, x2)exp[i(xl~ 1 + x2~2)ldxldx 2 
R 2 

where g({) is the Fourier transform of the function U(X1, X2) , F -1 is the inverse Fourier transform and 
Pc  is the restriction to the crack domain G. 

Despite the fact that the operator A is not local and, in the case of this operator, there is no 
corresponding maximum principle, it was found that the solution of Eq. (1.1) possess many of the 
properties of the Dirichlet problem for Poisson's equation. In particular, comparison theorems [2-4] 
and isoperimetric inequalities [5-7], which are analogous to those which hold in the case of Poisson's 
equation (also, see [8, 9]) were proved for the solutions of problem (1.1). The existence of a relation 
between the solutions of Eq. (1.1) and the solutions of Poisson's equation has also been pointed out 
[101. 

The aim of this paper is to transfer a further result, which holds for Poisson's equation, to Eq. (1.1). 
The following assertion has been proved by Aleksandrov's moving hyperplane method [11]. 

tPrikl. Mat. Mekh. Vol. 69, No. 1, pp. 135-143, 2005. 
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Suppose u(x) is the solution of the Dirichlet problem for Poisson's equation 

A u ( x ) = - l ,  x 6 D c R';  u(x') = O, x' ~ OD 

Here D is a bounded domain in R n with a fairly smooth boundary 0D. If the condition 

(1.2) 

Ou(x')lOn = const (1.3) 

is satisfied, where n is a unit outward normal to OD, then the domain D is a sphere. 
Following the publication of [11], several further papers appeared in which this result was proved by 

other methods [12, 13]. 
Now, suppose u(xl, x2) is the solution of Eq. (1.1). It is well known that, close to the smooth boundary 

of the crack OG, the function U(Xl, x2) has the following asymptotic form 

u(x  l, x2) = 21 - vK,(X'l, x'2) s 1/2 (x',, x2) e OG (1.4) 
g 4 %  ' 

Then, (xt, x2) lies on the normal to the boundary 0G which passes through the point (x], x~), s is the 
distance between the points (xl, x2) and (x], X~) and Ki(x'l,x'2) is the stress intensity factor (SIF)I 

We will assume that the loads applied to the crack surfaces, are uniform, that is, 

t (x)  = t o = const>0 (1.5) 

It is seen from relation (1.4) that, in the tensile crack problem, the condition 

0 
Kl(X'l, X'z) = g l  const (1.6) 

i san analogue of condition (1.3). 
Consequently, in the case of Eq. (1.1), the question can be formulated in the following manner: is it 

true that, if in the case of a uniform normal load the stress intensity factor is constant along the contour 
of a bounded crack, the crack has the form of a circle? 

We also note that the problem of constructing the crack domains, for which the stress intensity factor 
is constant along the contour for different types of specified loads, has been discussed in [8]] in connec- 
tion with the construction of the extremal contours of cracks. 

2. F O R M U L A T I O N  AND S C H E M E  FOR THE P R O O F  OF 
THE T H E O R E M  

Theorem 1. Suppose uniform normal loads t(xa, x2) = to are applied to the surfaces of a crack G, which 
is bounded by a simple, closed, smooth (class C ; !  contour 0G and that the stress intensity factor is 
constant along the crack contour (Ki(x'l, x2) -- Then, the crack domain G is a circle. 

To prove this theorem, following a well-known approach [11], we will use Aleksandrov's moving 
hyperplane method. This method is based on several geometrical assertions. We will present their two- 
dimensional formulations, which will be required later. 

Assertion 1. Suppose G is a bounded planar domain and a straight line is found for any direction which 
has the given direction and is such that the domain G is symmetrical about this line. Then, G is a circle. 

We will assume that OG is a simple, closed, smooth curve. We take an arbitrary direction and straight 
line T which has this direction and does not intersect the domain G. We start to move this line in the 
direction of the domain G such that it remains parallel to its'elf. The line T divides the plane into two 

2 2 half-planes R2 and R+ which are located in directions opposite to and the same as the direction of motion 
of the line T, respectively. As the line T advances, it initially comes into contact with the closure of 
domain G, which is denoted by G and then starts to intersect it. In this case, the domain G is divided 
into two parts G_ and G+ belonging to the half-planes R_ 2 and R2+. We now reflect the domain G_ 
symmetrically with respect to the line T and we denote the image of G_, under this mapping, by Gs 

"~See also: GOEDSHTEIN, R. V. and ENTOV, V. M., Some Qualitative Methods in Fracture Mechanics. Preprint No. 76, Inst. 
Problem Mekh. Akad. Nauk SSSR, Moscow, 1976. 
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(Fig. 1). As the line T advances, the domain G_ increases and the domain G+ decreases. By virtue of 
this, the domain Gs will initially belong to G+ and subsequently cease to belong to this domain. We 
consider the limiting position of the line T for which the domain G~ still belongs to the domain G+. 

Assertion 2. Only two versions of the limiting position are possible: 
(1) the boundary of the domain Gs touches the boundary of the domain G+ at a certain point P e OG 

(Fig. 2); 
(2) the line T becomes orthogonal to the boundary ~G at a certain point Q of the intersection of Twith 

OG (Fig. 3). 
It will be shown below that the assumption that Gs ;~ G+ in the case of the limiting position of the 

line T leads to a contradiction. Consequently, the domains Gs and G+ are identical in the case of the 
limiting position of the line T, which means that the domain G is symmetrical with respect to T. 

Since this assertion will be proved for a limiting line T in an arbitrary direction, it follows from assertion 
i that G is a circle. 

3. P R O O F  O F  T H E  A U X I L I A R Y  A S S E R T I O N S  A N D  T H E O R E M S  

For the proof, it will be more convenient to use the equation of the tensile crack problem in the form, 
which differs form (1.1) but is equivalent to it. This problem can be reduced to a mixed boundary-value 
problem for a function which is harmonic in the half-space (for example, see [2]). 

We consider the half-space R3+ = {x = (Xl, X2, x3): x3 > 0. 
We will assume that the domain G lies in the plane x3 = 0. Suppose U(x) is a function harmonic in 

R3+. We specify the following mixed conditions on the boundary x3 = 0 

U(x 1,x 2,0) = O, (x I,x2)¢ G (3.1) 

~U(Xl, X2,0) 1 - v  
- - - t  o , (x  l , x 2 ) ~  G, t 0 > 0  (3 .2)  

~x3 g 

We will also assume that 

U(x) ~ 0 when [xl ---) oo 

We will use the notation U(xl, X2, 0) = b/(Xl, X2). Thus, the function u(xl, X2) which has been defined 
satisfies Eq. (1.1) with t(Xl, x2) = to. In turn, if u(xl, x2) satisfies Eq. (1.1), the function U(x), which is 
harmonic in the half-space and equal to u(xl, x2) when x3 = 0, satisfies boundary conditions (3.1) and 
(3.2). 

We now take an arbitrary plane 17 which is parallel to the x3 axis and does not intersect G. The line 
of intersection of the plane 17 and x3 = 0 is denoted by T. We now begin to move the plane FI parallel 
to itself in the direction domain G, during which the line T initially touches the domain G and 
subsequently starts to intersect it. The plane 17 separates the half-space R3+ into two quarter-spaces. 
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One of these, which lies, relative to 17, in the direction opposite to the direction of motion, is denoted 
by S_. The other quarter-space is denoted by S+. As above, we shall denote the part of the domain G 
belonging to S_ by G_ and the other part of the domain G, which belongs to S+, by G+. We now reflect 
S_ into S+ symmetrically with respect to the plane 17, during which the domain G is symmetrically 
reflected about the line T into the domain Gs, which lies on the boundary of the half-space R3+ and 
belongs to S+. As has already been noted above, the domain Gs will initially belong to G+ and 
subsequently ceases to belong to this domain. We now consider the limiting position of the plane II for 
which the domain Gs still belongs to the domain G+. We introduce a system of coordinates such that 
the limiting position of the plane 17 coincides with the plane xl = 0. In this case, S+ = {x: x3 > 0 and 
Xl > 0}. We construct the function in S+ 

V(x I, x 2, x 3) = U ( - x l ,  x2, x3) (3.3) 

It follows from definition (3.3) and the fact that the function U(x) is harmonic that V(x) is a function 
which is harmonic in S+. The boundary S+(3S+) consists of two half-planes: 17+ = 17 ~ R3+ and 
F+ = {(xl, X2, 0), X 1 --> 0) .  

It follows from definition (3.3) that 

V(X) -- U ( x )  = U(0,  x2, x3) , x • H+ (3.4) 

According to relations (3.1)-(3.3), on the boundary F+ we have 

V(x l ,x 2,0) = O, (x l ,x 2)~ G s (3.5) 

~V(xl, x2, O) OU(-xl, x2, O) 1 - v 
. . . .  t 0, (xj, x2) • G s (3.6) 

bX 3 OX 3 

Since, later, we shall repeatedly making use of the enhanced Hopf maximum principle [14], we present 
it here in the form in which it will subsequently be required. 

The enhanced Hopf maximum principle. Suppose the function W(x) is defined and continuous in the 
closure/3 of the domain D C R n and, within D, it satisfies the inequality 

AW(x) < 0 

Then, W(x) reaches a minimum value on the boundary OD. We will assume that W(x) reaches a minimum 
value at the point x; e 0/9 and that it can be inscribed in the D sphere, which intersects with OD at a 
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single point x~. In particular, this is possible if the surface OD is smooth in a certain neighbourhood of 
x~. We also assume that, at the point xb, there is a derivative of the function W(x) which respect to a 
certain direction l which is not tangential to OD at the given point and which goes inside D, then either 
~W(x'o)/31 > 0 or W(x) - W(x'o) = const. 

L e m m a  1. The inequality U(x) _> V(x) holds for x e S+ and, moreover, if Gs ~ G+, then U(x) > V(x) 
within S+. 

Proof. It follows from the comparison theorems [2, 4] that the solution of Eq. (1.1) in the case when t(xl, X2) >-- 0 
is non-negative and, if t(xl, x2) ~ 0, then u(xl, x2) > 0 within G. Consequently, on the boundary R3+, the function 
U(x) is non-negative, and it follows from the maximum principle that U(x) _> 0 in R3+ and, if u(xl, x2) ~ 0, then 
U(x) > 0 when x3 > 0. 

We now consider the function 

W(x) = U(x)-  V(x) (3.7) 

in the quarter space S+. 
It follows from the fact that U(x) and F(x) are harmonic functions that W(x) is a function which is harmonic in 

S+. 
It follows from definition (3.7) and equalities (3.4) that 

W(x) = W(0, x 2, x3) = 0, x = (0, x 2, x3) e lq. (3.8) 

From conditions (3.1) and (3.5), we have 

W(xj,x2,0) = O, (x l ,x 2,0)~ G+ (3.9) 

From the fact that u(xl, x2) > 0 in G+ and condition (3.5), we have 

W(Xl, x2, 0) > 0, (Xl, x 2, 0) • G+\G s (3.10) 

From the fact that the function U(x) tends to zero at infinity, we obtain 

W(x)-~ 0 when Ix[ --~ ~ (3.11) 

Hence, according to relations (3.8)-(3.11), if there is a point on the boundary OS+ at which W(x) < 0, then this 
point belongs to the domain Gs. In this case, the function W(x) has a negative minimum which is reached in this 
domain. However, according to conditions (3.2) and (3.6), 

~W(Xl, x2, 0) ~U(xI, x2, 0) ~V(xI, x2, 0) 
= = 0 when (xj, x 2, O) • G s (3.12) 

3X 3 OX 3 bX 3 

It follows from this and from the enhanced Hopf maximum principle that W(x) =- const, which contradicts the 
assumption. Hence, W(x) >__ 0 on 0S+ and W(x) > 0 within S+. 

L e m m a  2. Suppose stress intensity factors, which are defined by a function which is harmonic in a 
half-space and satisfies boundary conditions (3.1) and (3.2), are constant along the contour ~G, 
Kz(x'l, x'2) = K°l. Then, if Gs ~ G+, version 1 of the limiting position cannot be realized. 

Proof. Consider the function W(x) in S+. It follows from Lemma 1 that W(x) is non-negative and takes 
a minimum value which is equal to zero on 3S+. In particular, W(x) = 0 at the point P (Fig. 2). In the 
neighbourhood of the point P, we introduce a local curvilinear system of coordinates (s, Y2, Y3), where 
s is the natural parameter  of a curve measured from point P, the Y2 axis is directed out of the domain 
G along the principal normal to 3G at a point of the boundary with a parameter  s and we leave the 
Y3 axis codirected with the x3 axis but having its origin at the current point with the parameter  s. In the 
Y2Y3 plane, we change to the system of polar coordinates 

Y2 = rcos0, Y3 = rsin0, 0 < 0 < n 

The asymptotic form of a function, which is harmonic in a half-space and satisfies boundary conditions 
(3.1) and (3.2) close to the boundary OG, can be obtained from the results of an analysis of the behaviour 
of the solutions of elliptic equations in the neighbourhood of an edge [15]. In the system of coordinates 
(s, r, 0), on taking account of the condition KI = K °, we have [16, 17] 
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1-Vf  ~_KOrl/2 . 0 } U(x) = ---ff--~5/~ I s , n ~ -  torsin0 + O(r 3/2) (3.13) 

In particular, expansion (3.13) holds in a plane which is orthogonal to the boundary ~G at the point 
P. It follows from the definition of the function V(x) that, in this plane, it has an asymptotic form which 
are identical with (3.13). From this, we obtain the asymptotic form of the function W(x) in this plane 
in the neighbourhood of the point P 

W(x) = U ( x ) - V ( x )  = O(r 3/2) 

It can be seen that, in a plane which is orthogonal to the boundary bG at the point P, there are 
derivatives of the function W(x) along directions which do not lie in the plane of the crack and, moreover, 
these derivatives are equal to zero. In particular, OW(P)/Ox3 = 0. It follows from this and from the 
enhanced Hopf  maximum principle that W(x) - const, which contradicts the assumption that G~ ~ G+. 

Lemma 3. Suppose the stress intensity factors, which are defined by a function which is harmonic in 
the half-space and satisfies boundary conditions (3.1) and (3.2), are constant along the contour ~G, 
KI(X'l, x'2) = K °. Then, if Gs ~ G+, version 2 of the limiting position cannot be realized. 

The proof rests on the following auxiliary assertion. 

Lemma 4. Suppose that, in the case of a function which is harmonic in a half-space, boundary conditions 
(3.1) and (3.2) are satisfied, Ki(x'l, x'2) = K °, version 2 of the limiting position is realized and Gs ~ G+. 
Consider the point Q (Fig. 3). At this point W(Q) = 0. We take an arbitrary direction l which is not 
tangential to OS+ at the point Q and goes inside the domain S+. It follows from the above conditions 
that the function W(x) has a first and second derivative in the direction l at the point Q and, moreover, 
these derivatives are equal to zero 

Wt(Q) = O, Wtt(Q) = 0 (3.14) 

Proof. In the (s, r, 0) coordinates introduced above in the neighbourhood of the point Q, the asymptotic expansion 
of the function U(x) 

l -V[~[ - . .0  1/2. 0 r3/2[ 30 .0 . .  30"~-] t8} U(x) = ---ff--l~]~L^,r sln~ +--~-/M(s)sin~- + t~,~zts)sin ~)J-t0rsin + O(r 5/2) (3.15) 

which is harmonic in the half-space and satisfies conditions (3.1) and (3.2), holds. Here, M(s) is a smooth function 
defined on the contour and K(s) is the curvature of the contour. 

The smooth part of the function, which is quadratic in the variables xl, x2, x3, is missing from (3.15) by virtue of 
boundary conditions (3.1) and (3.2). 

We introduce the rectangular system of coordinates QZlZ2Z3 in the neighbourhood of the point Q such that the 
Zl axis is directed along the tangent to OG at the point Q, the z2 axis is directed along the principal normal outside 
the domain G and the z3 axis is parallel to the x3 axis. We now change to the spherical coordinates 

z I = psin~cosq0, z 2 = psin~sinq0, z 3 = pcos~; 0 < ~ < n / 2 ,  0<q0<n 

We consider a half line which is defined by the angles 4/= ~0, q0 = %. We write the expansion (3.15), which 
holds in a certain neighbourhood of Q, for a point of this half-line and express the variables r and 0 appearing in 
(3.15) in terms of the variable p and the angles ~0 and %. For this purpose, we take a point on the half-time A ° 
with coordinates (p, %, ~0), which correspond to the Cartesian coordinates (z•, z~, z~). 

Suppose that, in the neighbourhood of the point Q the equation of ~G in the plane z3 = 0 has the form z2 = 
q)(Zl). On taking account of the fact that the za axis is a tangent to this curve, the function ~(q)  can be written in 
the form 

2 O(z~) ~(zl) = -~ozj/2+ (3.16) 

where r,.a is the curvature of the contour at the point Q. 
The equation of the plane which is normal to OG and passes through the pointA* = (zt, ~(zt), 0), has the form 

zj - zj* + q~'(z*)(z2 - ~(z~)) = 0 (3.17) 



Symmet ry  in the theory  of  elasticity p rob l em concerning a p lanar  tensile crack 133 

Suppose this plane intersects the half-line being considered at the point A °. We now express z~ ~ in terms of p. 
In order to do this, we substitute 

0 0 
zl = zl = psin~0cos%, z2 = z2 = psin~0sin% 

and expression (3.16) when Zl = z[ into Eq. (3.17). On solving the resulting equation for z~, we obtain z~ and then 
also z~ = qb(z~). 

We now calculate the distance r between the points A ° and A* and obtain 

. 3 2 q 
sm ~0sin%cos % + O ( p 2 )  , q0 = s m  ~0sln % + c o s  ~o (3.18) r = pq /2 I+K:Qp 2q ° 

t_ 

We next determine the magnitude of the angle 0. Using the equality 

pcosq0 = rsin0 (3.19) 

and relation (3.18), we obtain 

• 2 2 cos~ ° 
sm ~0cos~oCOS % +O(p2), 0 0 = arcsin-----U--/. (3.20) 

0 = 00-~:Qp 2q ° qo 2 

Substituting expressions (3.18)-(3.20) into the symptotic expansion (3.15), we obtain 

2 2 
l - v [  /2[ .  0 1/4 • 60 ..0 3/2 sin IItoC°S (PO X 

U(x) = .---77-. 5.1-/t~lP 1/2q0 smv7+ KIKQp 3/4 
~/n L 4q0 

( Oo Oo 
x [ sin ~- sin ~/o sin % - cos ~- cos ~I/o + (3.21) 

0 3 0 0  . . . . .  

+ --T-[Mtumn-T 

We now consider the half-line defined by the angles ~0 and % and which lies in the domain S+ (0 < ~t0 < n/2, 
0 < % < n/2). Under a reflection of S_ into S+, which is symmetrical about the zl = 0 plane, the half-line defined 
by the angles ~0 and (p~, where (p~ = n - %, maps into the indicated half-line and, moreover, the points (p, q0~, ~t0) 
map into the points (p, %, ~0)- It follows from expression (3.21), the definition of q0 (the second expression of 
(3.18)) and the definition of 0 (the second expression of (3.20)) that the terms in the expansion of the function 
U(x) with an order of smallness with respect to p of lower than p5/2 are identical at the points (p, q)~, ~0) and 
(P, %, ~0)- It follows from this and from the definition of the function W(x) that W(x) = O(p5/2) in the half-line 
specified by the angles ~0 and %, that is, equalities (3.14) are satisfied along the given direction. 

For  the p r o o f  of  L e m m a  3 beside L e m m a  4, we also use the enhanced  m a x i m u m  principle at the 
poin t  Q for  the domain  S+. Since the point  Q lies on the edge of  a right dihedral  angle, direct use of  
the enhanced  H o p f  m a x i m u m  principle is impossible  since one  cannot  inscribe a sphere  in S+ which 
only intersects aS+ at the point  Q. We therefore  use another  version of  the enhanced  m a x i m u m  principle 
[11] which is suitable for  this case. We will fo rmula te  it in a fo rm sufficient to prove  L e m m a  3. 

Assertion 3. Suppose  D* C R n is a domain  bounded  by a smooth  surface and that  lq is a hyperp lane  
which passes through a joint  Q ~ 0D* and is no rma l  to the surface OD* at the given point.  Suppose  D 
is the par t  of  the domain  D* which lies on one  side of  H. We will a ssume that  the funct ion w(x), which 
is defined in the closure of  the  domain  D, satisfies the following condit ions 

A w ( x ) < 0 ,  w(x)>O, x~ D; w(Q) = 0; w(x') = O, x'~ FIND* 

Suppose  l is an arbi t rary direct ion which passes into the domain  D and is not  tangential  to the surface 
0D at the poin t  Q. We will also assume tha t  the derivatives wt(Q) and wu(Q) exist, in which case one, 
of  three  possibilities holds: 

1 ) w t ( Q ) > 0 ;  2 ) w t ( Q )  = o, w , ( Q ) > 0 ;  

3) if wl(Q) = 0 and w,(Q) = 0, then  w(x)-=const  
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The assertion of Lemma 3 immediately follows from Lemma I and 4 and the above mentioned version 
of the enhanced maximum principle. Actually, according to Lemma 1, the harmonic function W(x) which 
has been constructed is non-negative. Furthermore, it satisfies conditions (3.8) and (3.14). It therefore 
follows from Assertion 3 that W(x) -- const, which contradicts the assumption that Gs ~ G+ .  

It is now possible to complete the proof of the main theorem. It follows from Lemmas 2 and 3 that, 
if Gs e G+, then neither of the two possible versions of the limiting position can be realized. 
Consequently, in the limiting position G s = G+ ,  that is, the domain G is symmetrical about the line T. 
Since the line T had an arbitrary direction, it follows from this that, for any direction, there is a line 
having the given direction about which the domain G is symmetrical. According to Assertion 1, this 
means that the domain G is a circle. 

Remark. It has been proved in [8]t that constancy of the stress intensity factor is a necessary condition for the 
contour of the crack to be extremal. It follows from the theorem proved above that, in the case of a uniform load, 
this condition is also a sufficient condition. 
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(Nsh - 1849.2003.1). 
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